Spatial Copula Model for Imputing Traffic Flow Data from Remote Microwave Sensors

نویسندگان

  • Xiaolei Ma
  • Sen Luan
  • Bowen Du
  • Bin Yu
چکیده

Issues of missing data have become increasingly serious with the rapid increase in usage of traffic sensors. Analyses of the Beijing ring expressway have showed that up to 50% of microwave sensors pose missing values. The imputation of missing traffic data must be urgently solved although a precise solution that cannot be easily achieved due to the significant number of missing portions. In this study, copula-based models are proposed for the spatial interpolation of traffic flow from remote traffic microwave sensors. Most existing interpolation methods only rely on covariance functions to depict spatial correlation and are unsuitable for coping with anomalies due to Gaussian consumption. Copula theory overcomes this issue and provides a connection between the correlation function and the marginal distribution function of traffic flow. To validate copula-based models, a comparison with three kriging methods is conducted. Results indicate that copula-based models outperform kriging methods, especially on roads with irregular traffic patterns. Copula-based models demonstrate significant potential to impute missing data in large-scale transportation networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asphalt Pavement Performance Model of Airport Using Microwave Remote Sensing Satellite

The purpose of this study is to build the binary logit model of an airport pavement that could monitor the pavement condition in near real time using microwave remote sensing satellite, then the relationship between the international roughness index (IRI) of an airport and backscattering values from PALSAR images of the ALOS satellite was determined. Total 390 data were used in analysis. This m...

متن کامل

Spatial sampling uncertainty in SMEX04 soil moisture fields: A data-based resampling experiment

A data-based resampling experiment is performed to estimate sampling errors of area-averaged soil moisture estimates due to spatial sampling by ground-based sensors. The data consists of high-resolution soil moisture images derived from the Polarimetric Scanning Radiometer (PSR/CX) sensor flown on an aircraft as part of the summer field experiment (SMEX04 — Soil Moisture Experiment 2004) in the...

متن کامل

Modeling and Algorithms on Releasing Range of Traffic Guidance Information

The traffic guidance system is an important subsystem in the intelligent transportation system which can timely release alerts regarding traffic congestion, incidents and other information to road-users. However, it is very hard to decide the releasing range exactly where and for whom to release such information. With the correlation analysis of road traffic flow in time and space domain, the r...

متن کامل

Fusion of LST products of ASTER and MODIS Sensors Using STDFA Model

Land Surface Temperature (LST) is one of the most important physical and climatological  crucial yet variable parameter in environmental phenomena studies such as, soil moisture conditions, urban heat island, vegetation health, fire risk for forest areas and heats effects on human’s health. These studies need to land surface temperature with high spatial and temporal resolution. Remote sensing ...

متن کامل

3.7 Disaggregation of Microwave Remote Sensing Data for Estimating Near-surface Soil Moisture Using a Neural Network

1.1 Statement of problem Estimation of soil moisture using microwave remote sensors holds great promise for many applications, including numerical weather prediction and agriculture. However, a scale disparity exists between the resolutions of future satellite-borne microwave remote sensor data (30-60 km) and the much finer scales at which soil moisture estimates are desired (~ 1 km). Hydrology...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017